
fsacl Library

Jan Daciuk
Department of Intelligent Information Systems

Gdańsk University of Technology
jandac@jandaciuk.pl

August 30, 2016

Contents

1 Introduction 3

2 Package Contents 4
2.1 Library . 4
2.2 Programs . 4
2.3 Perl Scripts . 5
2.4 Documentation . 5

3 Usage 6
3.1 Preparation of Input Data . 6

3.1.1 Building Automata for Spelling Correction and Restora-
tion of Diacritics . 6

3.1.2 Building Automata for Perfect Hashing 6
3.1.3 Building Automata for Morphological Analysis 7
3.1.4 Building guessing automata (index a tergo) for morpho-

logical analysis . 7
3.1.5 Building and using guessing automata for guessing mor-

phological descriptions in mmorph format 8
3.1.6 Building and using automata for morphological generation 9

3.2 Invocation of the Library Functions 9
3.2.1 set option . 11
3.2.2 write sorted construction file 11
3.2.3 write unsorted construction file 11
3.2.4 fsacl set errno . 11
3.2.5 fsacl get errno . 11

4 Internals 12
4.1 Representation Formats . 12

4.1.1 Format Number 5 . 13
4.2 Algorithms . 14

5 Performance 15

6 Troubleshooting 16

1

7 Licence 17

8 Bugs 18

9 Changes 19
9.1 Version 0.1 . 19
9.2 Version 0.2 . 19

2

Chapter 1

Introduction

This paper documents my library fsacl. The library is hosted on my server
www.jandaciuk.pl, and it has a web page www.jandaciuk.pl/fsacl.html.
The library is distributed with supporting scripts, and with documentation.
The library is meant as a replacement for programs fsa build and fsa ubuild

from my fsa package, which became too difficult to maintain. The remaining
programs of the fsa package are to be replaced with my fadd library.

The aim of fsacl is to provide functions for constructing minimal, deter-
ministic, finite-state automata that serve as dictionaries.

3

www.jandaciuk.pl
www.jandaciuk.pl/fsacl.html

Chapter 2

Package Contents

2.1 Library

Makefile - you should know what it is
fsacl.cc - library code
fsacl.h - C/C++ header

2.2 Programs

nfsa build.cc - replacement for fsa build

nfsa ubuild - replacement for fsa ubuild

dump.cc - prints structure of the automaton for some formats (not in
Makefile, so not compiled by default)

4

2.3 Perl Scripts

mmorph23c.pl - example script for converting mmorph output to 3 column
format

morph data.pl - example prep script for morphology
morph infix.pl - example prep script for morphology with infixes
morph prefix.pl - example prep script for morphology with prefixes
prep atg.pl - example prep script for guessing only categories
prep atl.pl - example prep script for guessing lexemes & categ.
prep ati.pl - example prep script for guessing l&c with infixes
prep atp.pl - example prep script for guessing l&c with prefixes
atl prefix.pl - example prep script for a tergo with prefixes
prep gen.pl - example prep script for morphological generation
prep genp.pl - example prep script for morphological generation with prefixes
prep geni.pl - example prep script for morphological generation with infixes
de morph data.pl - example script for converting fsa morph input to 3 column

format
de morph infix.pl - example script for converting fsa morph input with coded in-

fixes and prefixes into 3 column
demorph.pl - example script for converting fsa morph output into 3 column

format
chkmorph.pl - example script checking whether guessed descritpions for

mmorph produce inflected forms
gendata.pl - example script to prepare data for a guessing automaton for

prediction of morphological descriptions in mmorph format
sortatt.pl - example script that sorts words on their features; the order

is taken from the preamble of morphologicasl description for
mmorph; the script is used by tclmacq.tcl

simplify.pl - script used by the Tcl interface to fsa guess tclmacq.tcl to
expand descriptions where features are given as sets of alterna-
tives, e.g. gender=m—n; the script produces several lines with
one alternative in each one

2.4 Documentation

00CHANGES - what has changed from previous versions
00INSTALL - how to compile and install the package
00README - this file
fsacl.pdf - printable documentation
fsa build.1 - manual page for fsa build and fsa ubuild
fsa ubuild.1 - manual page for fsa ubuild (pointer to fsa build.1)

5

Chapter 3

Usage

See programs nfsa build and nfsa ubuild for examples how to use the library.
We explain preparation of data using the programs as examples, but you can
just use the library in your own programs instead.

3.1 Preparation of Input Data

3.1.1 Building Automata for Spelling Correction and Restora-
tion of Diacritics

Automata for spelling correction and (related to it) restoration of diacritics
contain lists of simple words. Therefore, no special preparation of data is needed.
The input should contain a list of words, one word per line. Each line is treated
as one word, regardless of whether it contains spaces, or not. Examples:

fsa_ubuild -i wordlist -o words.fsa

LC_ALL=C sort -u wordlist | fsa_build -o words.fsa

3.1.2 Building Automata for Perfect Hashing

Perfect hashing provides mapping between words and a range of numbers. I
use it for simple words, but it can be used e.g. with words with categories
(such as those for morphological analysis) to provide pointers to their semantic
interpretation, etc. If you want to know the mapping in advance, use fsa build

(and sort the input data in advance). Remember that certain options (like
SORT ON FREQ, OPTIMIZE, etc.) change the order of words in the automaton, so
make sure you get what you want. There are cases when the exact numbering
of words is not important, only the fact, that it is provided. In those situations,
you can also use nfsa ubuild. You can learn the mapping afterwards, using
fsa hash or fsa prefix from my fsa package. Examples:

6

LC_ALL=C sort -u wordlist > wlist_sorted; nfsa_build -i wlist_sorted -o w.fsa

some_process | fsa_ubuild > w.fsa

3.1.3 Building Automata for Morphological Analysis

The first problem is to find morphological data. If you prepare such data us-
ing mmorph from ISSCO, you can use mmorph23c.pl to convert the output of
mmorph to a 3 column format, the first column being the inflected form, the
second one - the canonical (or base) form, and the third one - the categories (or
annotations). I treat such format as a reference; it should be relatively easy to
convert output of other morphology programs to that format.

Because canonical forms could inflate the automaton, they must be coded.
I have included a perl script morph data.pl that should do the job. Examples:

mmorph -q -m dict | perl mmorph23c.pl |\

perl morph_data.pl | nfsa_ubuild -O -o dict.fsa

mmorph -q -m dict | perl mmorph23c.pl |\

perl morph_data.pl | LC_ALL=C sort -u | nfsa_build > dict.fsa

mmorph -q -m dict | perl mmorph23c.pl | perl morph_data.pl |\

LC_ALL=C sort -u | nfsa_build > dict.fsa

Note that if you install the package, perl scripts should have the execu-
tion bit set, so you can simply write e.g. ”mmorph23c.pl” instead of ”perl
mmorph23c.pl”.

If the language in question contains infixes (well, not linguistically, just
strings of characters that must be deleted inside the inflected form, e.g. in
German eingeladen -¿ einladen), then you can use the script morph infix.pl

to prepare the data, and then use fsa morph from fsa package with the option
-I. It may be worth doing, as the automaton can be much smaller, e.g. I reduced
the size of a German morphology from 1720460 bytes to 669332 bytes.

3.1.4 Building guessing automata (index a tergo) for mor-
phological analysis

I assume that you can have your data in the 3-column format described above.
You can use prep atg.pl to prepare data for an automaton that guesses only
categories (useful for tagging), prep atl.pl for preparing an automaton that
guesses both the canonical forms and the categories, and prep atp.pl for an
automaton that guesses both canonical forms, and categories, and uses prefixes
to distinguish some forms.

perl prep_atg.pl dict | nfsa_ubuild -o dict.atg

perl prep_atl.pl dict | LC_ALL=C sort -u | nfsa_build -O -o dict.atg

7

3.1.5 Building and using guessing automata for guessing
morphological descriptions in mmorph format

First divide your morphological descriptions in mmorph format into two files.
The first file should include everything up to and including the line with ‘@
Lexicon’. The default name for that file would be ‘preamble’, but you can
change that.

The second file should contain the rest, i.e. the descriptions of individual
words. Its standard name would be ‘lexicon’, but again you can change that.

Call gendata.pl. To see how to use it, give it -h option. If the language
uses prefixes, give it a -P option. If it uses both prefixes and infixes, use -I
option. If lexical forms have archiphonemes that stay close to their beginnings,
specify them with -a option (if there is more than one, then separate them with
semicolons). Example:

perl gendata.pl -I -a ’sep_part;c_h’ | uniq | LC_ALL=C sort -u > guess_data

In the example above, standard names for the preamble and the lexicon are
assumed. Usually you don’t need to invoke perl explicitly, i.e. you can have
no ‘perl’ in front of gendata.pl. Option -I was used, which indicates that the
language has infixes (like German or Dutch).

Create the guessing automaton in the usual way. nfsa build or nfsa ubuild

should give the best results when using GENERALIZE option. Example:

nfsa_build -X -O -i guess_data -o guess.fmm

Then run fsa guess from the fsa package on a list of unknown words:

fsa_guess -m -I -d guess.fmm -i unknown_words.txt > guesses.txt

In the example above, option -I was used to treat prefixes.
You can use two filters to improve the quality of those guesses. chkmorph.pl

rejects those descriptions in guesses that do not generate the required inflected
form. This script is rather slow, but it is worth using. sortondesc.pl sorts
descriptions for one particular word so that the descriptions that also show in
guesses for other words appear first.

Now you can use the Tcl/Tk interface ‘tclmacq.tcl’. You can invoke it with
the name of the file with guesses:

tclmacq -G guesses.txt \&

You can customize the language of the interface by adding your own entries
to the files help.txt and lang.txt.

8

3.1.6 Building and using automata for morphological gen-
eration

I assume that you have you data in 3-column format described above. You
can use prep gen.pl to convert data in that format into a format suitable as
input data for automata for morphological generation. Use prep genp.pl if the
language has prefixes, and prep geni.pl if it has infixes.

mmorph -q -m dict | perl mmorph23c.pl |\ perl prep_gen.pl |\

LC_ALL=C sort -u | fsa_build > dict.fsa

To generate a surface form with given features, call fsa synth:

fsa_synth -d dict.fsa

and give it a canonical form and the desired features, e.g.:

akt n[gen=mna num=sg case=gen]

where the canonical form (”akt”) starts from the first column, and is sep-
arated from the tags (”n[gen=mna num=sg case=gen]”) with spaces and/or
horizontal tabulation characters.

When you want to list all forms with num=sg, call fsa synth with -r

fsa_synth -d dict.fsa -r

and on input, specify the features as a regular expression:

akt .*num=sg.*

To list all surface forms for a canonical form use -a option.

3.2 Invocation of the Library Functions

The library has 5 functions:

• set option

• write sorted construction file

• write unsorted construction file

• fsacl set errno

• fsacl get errno

9

Two other functions are planned for constructing automaton directly in the
memory without writing it to a file. Function set option is used to constructed
options to be passed to the library. The next two functions construct automata
(from sorted or unsorted data), and write the resulting automaton to a given file
or standard output. Function fsacl get errno should be invoked directly after
the two automata constructing functions (later also after two planned functions
for constructing automata in memory).

The options passed to construction functions are:

• SORT ON FREQ — Outgoing transitions of states are sorted on frequency of
their labels. This option influences the order of words in the automaton,
speed of look-up, and the size of the automaton. The order of words
in the automaton may matter in perfect hashing (see WITH NUMBERS).
Transitions are sorted on increasing frequency unless stated otherwise (see
DESCENDING). If transitions are sorted on increasing frequency, it should
improve average look-up time. The influence on the size of the automaton
varies. Note that this option is incompatible with sparse vector represen-
tation, which is not yet implemented.

• WITH NUMBERS — More information is stored in the automaton so that
the words in the automaton are numbered. The order of words in the
numbering depends on the use of options SORT ON FREQ and DESCENDING.
If SORT ON FREQ is not used, words are numbered alphabetically (more
precisely, they are ordered in the same way they would be ordered with
the command sort with LC ALL=C). Note that this option is incompatible
with option OPTIMIZE.

• OPTIMIZE — This option switches on additional optimization, mainly stor-
ing states inside other states. This option is incompatible with option
WITH NUMBERS.

• MAKE INDEX — This option turns on construction of a guessing automaton.

• WEIGHTED — This option is not yet implemented. In the fsa package, this
option is used for constructing better guessing automata.

• GENERALIZE — This option is not yet implemented. In the fsa package,
it is used for constructing better guessing automata.

• PROGRESS — This option is not yet implemented. in the fsa package, it
showed progress of the construction process.

• DESCENDING — Outgoing transitions of states are sorted on decreasing
frequency of their labels. This option requires option SORT ON FREQ. This
option influences the order of words in the automaton, look-up speed (it
should be slower on average), and the size of the automaton (it should be
smaller).

10

3.2.1 set option

Name set option

Purpose Sets an appropriate bit in the integer variable that is provided
as a parameter.

Parameters options — (i/o) integer variable that collects options to be
passed to automata constructing functions;
option — (i) individual option to be set.

Returns Nothing.
Globals None.
Remarks The options are written as 1-bit flags.

3.2.2 write sorted construction file

Name write sorted construction file

Purpose Constructs an automaton from sorted data and writes it to the
specified file.

Parameters input — (i) input file name or empty string if the data is to be
read from the standard input;
output — (i) output file name or empty string, if the resulting
automaton is to be written to the standard output;
options — (i) options for building the automaton (options are
set with set option, Section 3.2.2).
annot sep — (i) annotation separator character that separates
words from annotations in morphological dictionaries (default:
”+”);
filler — (i) filler character used in guessing automata (default:
”+”);
version — automaton representation format version (default:
5).

Returns Nothing.
Globals fsacl errno — (o) error code (0 is OK).
Remarks Function fsacl get errno should be invoked right afterwards

to check for errors.

3.2.3 write unsorted construction file

3.2.4 fsacl set errno

3.2.5 fsacl get errno

11

Chapter 4

Internals

To be completed.

4.1 Representation Formats

My fsa package introduced several representation formats. This library is meant
to be compatible with the package.

For the moment, the library uses fsa format version 5. The formats are
designed so that they are portable, and dependent on computer architecture.
In particular, an automaton produced on a big-endian machine can be processed
on a little-endian machine, and the other way round. To see the structure of
an automaton, compile dump.cc — a program delivered in the package (coming
from my fsa package). Note that it is not compiled by running make; you have
to do that by hand.

An automaton is stored in a file, which has a header. The header has 8
bytes:

• The first 4 bytes contain the string ”\fsa”. This is so called ”magic num-
ber” that identifies the file as containing an automaton.

• Byte number 4 (counting from 0) contains format version number.

• Byte number 5 contains a filler character. It is used mainly in guessing
automata. The default filler is ” ” (underscore).

• Byte number 6 contains an annotation separator. This is a character that
separates words from their annotations in morphological dictionaries. The
default annotation separator is ”+” (plus).

• Byte number 7 has a substructure. The 4 least significant bits contain
pointer length (gtl), i.e. target address length (in bytes) in a transition.
The 4 most significant bits contain entry length (entryl), which is the
length in bytes of a number that precedes a state in the representation of

12

the automaton, when the automaton is built with option WITH NUMBERS.
The number is the cardinality of the right language of the state.

4.1.1 Format Number 5

The format of a state is shown in figures 4.1 and 4.2.

7 6 5 4 3 2 1 0

·· ·· ·· ·· ·· ·· ·· ·· ··

entryl

3

2

1

MSb LSb

LSB

MSB



Cardinality of the
right language

of the state

Figure 4.1: Representation format number 5 — an optional number preceding
the state. It is present only when the automaton is constructed for perfect
hashing. It represents the cardinality (number of members) of the right language
of the state.

Figure 4.1 shows an optional number that can be present at the beginning
of a state. The number represents the cardinality of the right language of the
state. In other words, it is the number of strings that are recognized in the
part of the automaton starting in that state. The number is used for perfect
hashing, and it is present only when the automaton is constructed with option
WITH NUMBERS.

Figure 4.2 shows the structure of a transition. A state is represented as a
sequence of outgoing transitions. It may be preceded by a number (shown in
Figure 4.1). A transition has 3 flags:

• FINAL — set when the transition is final. Note that we have final transi-
tions, not final states. It saves space.

• STOP — set when the transition is the last one in the state. It takes less
space than a counter for outgoing transitions.

• NEXT — set when the target of the (last) transition is located right after
that transition. In that case only one byte of the target address is stored
— the one with flags. In that byte, only the flags matter when the NEXT

flag is set.

13

7 6 5 4 3 2 1 0

·· ·· ·· ·· ·· ·· ·· ·· ··

gtl

3

2

1

MSb LSb

LSB

MSB



target state
address if NEXT

flag not set

 transition is FINAL

transition is last (STOP)

target state is NEXT

label0

Figure 4.2: Representation format number 5 — following an optional number
depicted in Figure 4.1. It uses lists of transitions with 1-bit flags: FINAL,
STOP, and NEXT.

4.2 Algorithms

To be completed.

14

Chapter 5

Performance

To be completed.

15

Chapter 6

Troubleshooting

You will have UNPREDICTIBLE results if you use UNSORTED lists with
nfsa build, or if those lists contain REPETITIONS. Use sort -u on input data
for fsa build.

Beware of LC ALL and various locale environment variable settings. They
influence the output of sort making it unusable (all for your convenience).

If you change any compile option, and compile again, do make clean first. It
may save you a lot of troubles.

I have not run these programs under MSDOG. There may be problems with
CR LF sequence there; you may have to ‘eat’ CR at the end of words.

16

Chapter 7

Licence

The package can be distributed with a GPL licence, available e.g. at http:

//www.gnu.org/licenses/licenses.html.
These programs are provided ‘as are’. They work correctly for me, but I

offer you no guarranty. If you have lost a million, it was your million, not mine.

17

http://www.gnu.org/licenses/licenses.html
http://www.gnu.org/licenses/licenses.html

Chapter 8

Bugs

Probably a lot, as this is an early version. Some functions are not implemented.

18

Chapter 9

Changes

9.1 Version 0.1

This is the initial version.

9.2 Version 0.2

• Added sorting transitions.

• Corrected nfsa ubuild.

• Added sections in the documentation.

• Changed the interface to allow the library to be used with languages other
than C++.

19

	Introduction
	Package Contents
	Library
	Programs
	Perl Scripts
	Documentation

	Usage
	Preparation of Input Data
	Building Automata for Spelling Correction and Restoration of Diacritics
	Building Automata for Perfect Hashing
	Building Automata for Morphological Analysis
	Building guessing automata (index a tergo) for morphological analysis
	Building and using guessing automata for guessing morphological descriptions in mmorph format
	Building and using automata for morphological generation

	Invocation of the Library Functions
	set_option
	write_sorted_construction_file
	write_unsorted_construction_file
	fsacl_set_errno
	fsacl_get_errno

	Internals
	Representation Formats
	Format Number 5

	Algorithms

	Performance
	Troubleshooting
	Licence
	Bugs
	Changes
	Version 0.1
	Version 0.2

